Solar glass for self-sustaining greenhouses

Edith Cowan University

Friday, 10 February, 2017

Solar glass for self-sustaining greenhouses

Researchers from Edith Cowan University’s Electron Science Research Institute (ESRI), in collaboration with renewable energy company ClearVue Technologies, are building a 300 m2 greenhouse using transparent glass that can generate 50 W/m2 of surface area.

The solar glass allows 70% of visible light to pass through, while blocking 90% of solar UV and IR radiation. It will provide enough power to run heating or cooling for the greenhouse, as well as desalination to provide water. It could also be tailored to produce the perfect growing conditions for particular plants.

“Being able to selectively control light radiation, thus maximising the crop yield, while producing and storing electricity for water desalination, irrigation, heating and air conditioning, will enable greenhouses to operate in a closed environment,” said ESRI Director Professor Kamal Alameh.

“This is particularly significant for parts of the world that are too hot and dry for traditional greenhouse agriculture.”

ClearVue Technologies Chairman Victor Rosenberg noted that the glazing technology used to create the solar glass could be applied to applications far beyond greenhouses. “It could be used in the construction industry, for public amenities like bus stops as well as for specialty products,” he said.

The solar glass project has been made possible with the help of $1.6 million from the federal government’s Cooperative Research Centre (CRC) program.

Related News

Nanogenerator absorbs CO2, produces electricity

The technology goes further than being carbon neutral, as it consumes CO2 as it...

Fourth global coral bleaching event confirmed

The world is currently experiencing a global coral bleaching event, according to NOAA scientists....

Two new methods for faster sepsis diagnosis

Sepsis and septic shock patients could soon experience faster diagnoses and better outcomes,...


  • All content Copyright © 2024 Westwick-Farrow Pty Ltd