3D-printed human corneas


Monday, 09 July, 2018


3D-printed human corneas

Scientists at Newcastle University, UK, have 3D-printed the first human corneas.

The proof-of-concept research, published in Experimental Eye Research, reports how stem cells (human corneal stromal cells) from a healthy donor cornea were mixed together with alginate and collagen to create a solution that could be printed, a 'bio-ink'.

Using a simple low-cost 3D bio-printer, the bio-ink was successfully extruded in concentric circles to form the shape of a human cornea. It took less than 10 minutes to print, according to Newcastle University. The stem cells were then shown to culture — or grow.

Che Connon, Professor of Tissue Engineering at Newcastle University, who led the work, said, "Many teams across the world have been chasing the ideal bio-ink to make this process feasible.

"Our unique gel — a combination of alginate and collagen — keeps the stem cells alive whilst producing a material which is stiff enough to hold its shape but soft enough to be squeezed out the nozzle of a 3D printer.

"This builds upon our previous work in which we kept cells alive for weeks at room temperature within a similar hydrogel. Now we have a ready-to-use bio-ink containing stem cells allowing users to start printing tissues without having to worry about growing the cells separately."

The scientists, including first author and PhD student Abigail Isaacson from the Institute of Genetic Medicine, Newcastle University, also demonstrated that they could build a cornea to match a patient's unique specifications.

The dimensions of the printed tissue were originally taken from an actual cornea. By scanning a patient's eye, they could use the data to rapidly print a cornea which matched the size and shape.

Professor Connon said, "Our 3D-printed corneas will now have to undergo further testing and it will be several years before we could be in the position where we are using them for transplants.

"However, what we have shown is that it is feasible to print corneas using coordinates taken from a patient eye and that this approach has potential to combat the worldwide shortage."

Image caption: Dr Steve Swioklo, co-author with Professor Che Connon (right) as cornea is printed.

Related News

UNSW to analyse DNA samples from 15,000 aspirin trial patients

UNSW scientists are conducting genetic analysis of DNA samples from ASPREE trial participants.

Agribusiness partnership to explore native medicinal plants

A new research and commercial partnership aims to explore the development of a sustainable...

Genetic network linked to autism uncovered

Researchers have uncovered a network of more than 200 genes involved in controlling alternative...


  • All content Copyright © 2018 Westwick-Farrow Pty Ltd