Nanoparticles detect biomarkers for deep-tissue cancers


Tuesday, 07 August, 2018


Nanoparticles detect biomarkers for deep-tissue cancers

Australian and Chinese researchers have developed a new form of nanoparticle and associated imaging technique that can detect multiple disease biomarkers, including those for breast cancer, found in deep tissue in the body.

Reported in the journal Nature Nanotechnology, the study opens up a new avenue in minimally invasive disease diagnosis and will potentially have widespread use both for biomedical research and for clinical applications. It was carried out by researchers based at the ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University and Fudan University, China.

“The use of nanoparticles for bio-imaging of disease is an exciting and fast-moving area of science,” said study co-author Dr Yiqing Lu, from CNBP.

“Specially designed nanoparticles can be placed in biological samples or injected into specific sites of the body and then ‘excited’ by introduced light such as that from a laser or an optical fibre.

“Disease biomarkers targeted by these nanoparticles then reveal themselves, by emitting their own specific wavelength signatures which are able to be identified and imaged.”

A major limitation, however, is that only a single disease biomarker at a time is able to be distinguished and quantified in the body using this type of detection technique. Detection of multiple biomarkers — known as multiplexing — in the body has thus been a major challenge for researchers, according to Dr Lu.

“The tissue environment is extremely complex — full of light-absorbing and scattering elements such as blood, muscle and cartilage,” he explained. “And introducing multiple nanoparticles to a site, operating at multiple wavelengths to detect multiple biomarkers, produces too much interference. It makes it extremely difficult to determine accurately if a range of disease biomarkers are present.”

To solve this issue, Dr Lu and his fellow researchers engineered innovative nanoparticles that emit light at the same frequency (near infrared light) but that are able to be coded to emit light for set periods of time (in the microsecond-to-millisecond time range).

“It is the duration of the light emission and the biomarker reaction to this timed amount of light (known as luminescence lifetime) that produces a clearly identifiable molecular signature,” Dr Lu said.

“Multiple disease biomarkers can be clearly identified and imaged based on this approach as there are no overlapping wavelengths interfering with the reading.

“This enables high-contrast optical biomedical imaging that can detect multiple disease biomarkers all at the one time.”

In a breakthrough in laboratory testing, the innovative nanoparticles have been able to detect multiple forms of breast cancer tumours in mice — with Fudan University’s Professor Fan Zhang, joint lead author on the study, reporting that the team were able to successfully detect and identify key biomarkers for a number of different subtypes of breast cancer.

“This technique has the potential to provide a low-invasive method of determining if breast cancer is present, as well as the form of breast cancer, without the need to take tissue samples via biopsy,” said Professor Zhang.

“Ultimately our novel nanoparticles will enable quantitative assessment for a wide range of disease and cancer biomarkers, all at one time. The technique will be able to be used for early-stage disease screening and potentially utilised in integrated therapy.”

Professor Jim Piper, CNBP node leader at Macquarie University and a co-author on the paper, said the results mark “a major advance in a long-term effort at our centre at Macquarie University to develop innovative techniques for simultaneous detection of multiple disease markers in humans and animals”.

“Next steps in our research collaboration are to further refine the nanoparticles, to examine issues related to a clinical rollout of the technology and to explore further applications and disease areas where this technique could be best utilised,” he said.

The work is an extension of previous nanoparticle-imaging research undertaken by Dr Lu at Macquarie University which has been awarded a patent in the United States and China, and which has already been licensed with commercial partners.

Image caption: A stylised image of cancer-detecting nanoparticles in the body. Image credit: Yong Fan (courtesy of CNBP under CC BY-SA 2.0)

Related Articles

Drug-filled nanobubbles triggered by X-rays

The tiny bubbles, known as liposomes, are commonly used in pharmacology to encapsulate drugs,...

Super-multiplexed fluorescence microscopy

A new bleaching-assisted multichannel microscopy (BAMM) technique improves the quality and...

Drink up! Better detection developed for counterfeit liquors

US scientists have set out to take down the counterfeit liquor industry by engineering a device...


  • All content Copyright © 2018 Westwick-Farrow Pty Ltd