Bacterial genomes found lurking

Saturday, 30 April, 2005


When scientists finished sequencing the genomes of seven species of fruit fly last year, little did they know that they had also sequenced the genes of several bacteria that dwell undetected inside fruit fly embryos.

The genes of these bacteria, from a genus Wolbachia that infects many insects, have been sitting in the fruit fly gene database since then, unnoticed, according to Michael B Eisen, a UC Berkeley assistant professor of molecular and cell biology and a faculty scientist at Lawrence Berkeley National Laboratory. But Eisen, a geneticist who mines the fruit fly and other genomes for clues to how genes shape the organism, had an inkling they were there, and in a quick search of the genome database late last year, turned up a slew of bacterial genes.

Because he's a fruit fly geneticist and not an expert on bacteria, Eisen contacted bacterial geneticists at The Institute for Genomic Research (TIGR) in Maryland, and together they pulled out genes from three species of Wolbachia - all of them new to science.

"The sequencers who did the Drosophila species didn't even notice this because this is just a very small fraction of the total sequence and it was sort of tossed into the garbage," he said. "In every genome there is always stuff that doesn't make sense, and people weren't looking for it. We thought this was interesting as much for the novelty of the way the bacterial genomes were sequenced than what we learned about the bacteria themselves."

A team led by Steven L Salzberg of TIGR and including Eisen of UC Berkeley's Center for Integrative Genomics published their discovery in the open access journal Genome Biology.

"The discovery of these three new genomes demonstrates how powerful the public release of raw sequencing data can be," wrote the authors, who have deposited their findings in Genbank, an open repository of genomic sequences.

The existence of these bacterial species inside the fruit fly genome database is an artifact of the way the fly was sequenced, Eisen said. Embryos were ground up and the DNA extracted, meaning that any endosymbionts - organisms that live their entire lives inside another organism and have developed a mutual dependence with the host - would have had their DNA intermixed with fly DNA before sequencing.

Wolbachia made headlines a year ago with the publication of the genome sequence of the species Wolbachia pipientis, which lives inside the reproductive cells of the laboratory fruit fly Drosophila melanogaster. The bacteria were maligned as 'male killers' because they sometimes kill developing males, and occasionally convert male embryos to female. But species of Wolbachia live inside a wide variety of insects, spiders and crustaceans and have beneficial as well as deleterious effects, Eisen said.

Given the Wolbachia genome and the likelihood that W.pipientis had been sequenced along with the fruit fly genome, Eisen performed a quick look for Wolbachia in the Trace Archive, an open source for raw genome data. In his words, "I found a whole bunch of stuff."

Salzburg and his TIGR colleagues took over and searched not only the D.melanogaster genome but also the genomes of six other fruit flies so far sequenced. They found Wolbachia DNA in three species.

Related News

Rapid COVID-19 testing with a portable PCR system

A portable, easy-to-use, point-of-care diagnostic system for COVID-19 can deliver patients their...

Genomic diagnostics test available for blood cancer patients

Blood cancer patients at Melbourne's Epworth HealthCare and Peter MacCallum Cancer Centre now...

Universal virus detection platform could replace PCR

A new viral diagnostic strategy using reactive polymer-grafted, double-stranded RNAs is expected...


  • All content Copyright © 2020 Westwick-Farrow Pty Ltd