Magnetic therapy enhances chemo treatment of breast cancer

Wednesday, 11 May, 2022

Magnetic therapy enhances chemo treatment of breast cancer

Researchers from the National University of Singapore (NUS) are pioneering a novel magnetic therapy — delivered using their so-called ‘OncoFTX System’ — that serves as an effective companion therapy to chemotherapy to enhance treatment outcomes for breast cancer.

The non-invasive and painless treatment has the potential to lower adverse side effects of chemotherapy, which are sometimes so severe that patients need to terminate treatment early or doctors have to reduce the chemo dosage, and this could worsen their disease. Prolonged exposure to high doses of chemotherapeutic agents could also result in resistance to chemotherapy.

“Our magnetic technology stimulates cellular oxygen respiration to produce energy,” said team leader Associate Professor Alfredo Franco-Obregón. “In certain cancers with elevated respiratory rates — such as breast tumours — the magnetic pulses cause the cancer cells to ‘hyperventilate’ and die. Fortunately, the healthy tissues near the cancer are able to tolerate the increased respiratory rate, without ill consequences. Therefore, the OncoFTX System is more selective for cancer than conventional chemotherapy or radiotherapy. Importantly, this therapy is localised, non-invasive and painless.

Each session of magnetic therapy involves exposing a breast tumour to a pulsed magnetic field at a strength of 3 millitesla, for one hour. This field amplitude is about 50 times greater than the amplitude of the Earth’s magnetic field, but 1000 times smaller than conventional magnetic resonance imaging. Safety and efficacy trials will determine the best treatment frequency for breast cancer patients.

“The ultimate hope is that the combination is so effective that it reduces reliance on chemotherapy and its associated chemo side effects, as suggested by our published preclinical studies, but remains to be shown in human trials,” Franco-Obregón said.

In a recent study, the NUS team discovered that cancer cells that express high levels of TRPC1 — a cancer-causing gene associated with various types of cancers, such as breast cancer, pancreatic cancer, glioblastoma multiforme, lung cancer, hepatic cancer, multiple myeloma and thyroid cancer — are more vulnerable to the magnetic therapy. Hence, elevated TRPC1 expression could be used to identify patients who are suitable for a combination treatment involving magnetic therapy and selected chemotherapeutic agents such as doxorubicin (adriamycin).

The NUS team had also demonstrated through laboratory and preclinical studies that a combination of pulsed magnetic field exposure and doxorubicin was effective in reducing the size of breast cancer tumours. Their findings were published in the journal Frontiers in Oncology.

“Cancer cells are inherently unstable as they are in a constant state of metabolic catastrophe,” Franco-Obregón said. “Our breast cancer magnetic signal stimulates the TRPC1-mitochondria pathway, increasing the production of oxygen free radicals and resulting in ultimate demise of cancer cells.”

To further validate their findings, the research team plans to embark on a first-in-human safety trial in the second half of 2022, in collaboration with the National University Cancer Institute, Singapore (NCIS) at the National University Hospital. The one-year clinical trial is expected to involve about 30 breast cancer patients who will undergo the magnetic therapy in combination with chemotherapy.

“We observed encouraging results from preclinical studies showing improvement in local shrinkage of breast tumour,” said Dr Joline Lim, Consultant, Department of Haematology-Oncology, NCIS. “This first-in-human study will help to determine the safety of this therapy in patients, both given alone and in combination with chemotherapy. Our long-term goal is to establish its safety and efficacy in enhancing local treatment effect of chemotherapy to help patients achieve maximal shrinkage with minimal side effects.”

The NUS team also plans to test the effectiveness of their magnetic therapy in other types of solid tumours — such as prostate cancer — with and without chemotherapy.

“Prostate cancer shares many similarities with breast cancer as both are primary epithelial in nature and are hormone-driven malignancies,” Franco-Obregón said. “We have also found that prostate cancer is associated with elevated TRPC1 expression. This makes prostate cancer a likely candidate for us to apply the magnetic therapy to ascertain its effectiveness.”

In the long term, the team hopes their discovery will enable scientists to better optimise magnetic regimens for more effective killing of cancer cells, and in turn translate this knowledge into effective therapies to benefit cancer patients.

Image caption: Dr Alex Tai, Assoc Prof Alfredo Franco-Obregón and their team have developed a new magnetic therapy to be used in combination with chemotherapy for treatment of breast cancer.

Please follow us and share on Twitter and Facebook. You can also subscribe for FREE to our weekly newsletters and bimonthly magazine.

Related Articles

Bringing clinical trials to the home: a game changer for the sector

COVID-19 has forced Australia's pharmaceutical and healthcare companies to completely...

Aberrant protein found to kill bacterial cells

The erroneously built protein mimics the action of aminoglycosides, a class of antibiotics.

Milestone achieved in mitochondrial genome editing

Researchers have developed a new gene-editing platform that is capable of performing A-to-G base...

  • All content Copyright © 2022 Westwick-Farrow Pty Ltd