Gene plays role in type 1 diabetes
Scientists at Stanford University have identified a gene that may play a role in the development of type 1 diabetes, an autoimmune disease in which the immune system attacks the body's insulin-producing cells.
The study team examined genes from mice that develop a type 1 diabetes-like disease.
The investigators found that cells in the pancreatic lymph nodes of mice make two forms of the same gene called deformed epidermal autoregulatory factor 1 (Deaf1). One form is full-length and functional and the other is a shorter, non-functional variant form. The full-length, functional form of Deaf1 controls the production of molecules needed to eliminate immune cells that can destroy insulin-producing cells. The presence of the Deaf1 variant was found to prevent the full-length Deaf1 protein from functioning normally. Further experiments showed that the variant form blocked the genes needed to produce certain molecules involved in immune regulation.
When the researchers measured the levels of these two forms in people with type 1 diabetes and in healthy individuals, levels of the variant form were found to be higher in people with type 1 diabetes compared with those in healthy controls. In addition, the variant form, as in mice, inhibited the full-length form from functioning normally.
The researchers propose that the development of type 1 diabetes may be due, in part, to increased levels of the Deaf1 variant protein in pancreatic lymph nodes of people with this disease. Increased levels of Deaf1 variant may, in turn, lead to reduced production of molecules that are required to educate the immune system not to attack the body's own cells, including the insulin-producing cells of the pancreas. These results show that Deaf1 variant form is a risk factor for type 1 diabetes and provide a target for drug development to combat the disease.
SA Govt funds a new coastal research vessel
The 37.7-metre vessel will replace the 40-year-old MRV Ngerin, which has undertaken over...
Blood test rapidly diagnoses rare genetic diseases in children
The new blood test can rapidly detect abnormalities in up to 50% of all known rare genetic...
Govt announces $158m in funding for three new CRCs
Minister for Industry and Science Ed Husic has allocated $158 million to three new Cooperative...