Chemical analysis from a smartphone


Tuesday, 21 July, 2020


Chemical analysis from a smartphone

Researchers from Spain’s University of Alicante and Argentina’s Universidad Nacional del Sur have designed and validated a low-cost 3D-printed device that, when connected to a smartphone, makes it possible to conduct chemical analyses. Described in the journal RSC Advances, the technology presents a simple solution for onsite testing in developing countries or remote locations — without the need to step into the laboratory or access advanced technology.

Smartphones have a wide range of possibilities beyond everyday applications. In addition, 3D-printed devices are becoming more accessible and allow us to create not only simple parts but also complete determination systems. The research team’s device was developed by using 3D printing technology and employing a smartphone camera as a capture device to complete the determination.

The versatile detection system proved suitable for fast and accurate nephelometric and fluorimetric measurements of carbonated soft drinks (tonic) and water samples. Compared to reference fluorimetric and nephelometric methods, which require non-portable laboratory equipment, the proposed method applies the same chemical reagents, providing a portable and economical system for onsite determinations — especially in regions with limited resources.

In particular, the tests have revealed the concentration of quinine in tonic drinks, as well as concentrations of sulfate in drinking water samples below the maximum values allowed by European Council Directive 98/83/EC. The sulfate determination has been carried out by nephelometry using a red LED, while the quinine was determined using a blue LED with fluorimetry.

According to the researchers, there are currently no similar devices on the market; some items have been described in the scientific literature as having similar features but not covering both fluorimetric and nephelometric analytical techniques. The system thus offers enormous potential for in situ environmental, biochemical and food control determinations, with possible applications including chemiluminescent reactions and reading paper-based analytical microdevices. The device could also be adapted to any type of smartphone.

Image caption: Photograph of the proposed device.

Please follow us and share on Twitter and Facebook. You can also subscribe for FREE to our weekly newsletters and bimonthly magazine.

Related News

Microscopy centre to image the 'dark space' of cancer

The ACRF Centre for Intravital Imaging of Niches for Cancer Immune Therapy is set to address why...

Biomarkers used to detect traumatic brain injury on the spot

Researchers are using chemical biomarkers released by the brain immediately after a head injury...

Virtual triage tech identifies skin cancer in high-risk patients

A new virtual triage service, designed by MoleMap, has identified skin cancer in 12% of high-risk...


  • All content Copyright © 2020 Westwick-Farrow Pty Ltd