Detecting doping with a bacterial enzyme


Thursday, 18 August, 2016

With the 2016 Olympic Games drawing to a close, it’s fair to say that doping in sport is being more closely scrutinised than ever. It is therefore particularly timely that Australian National University (ANU) researchers are developing a new way to detect performance-enhancing drugs at major sporting events.

The team are engineering a bacterial enzyme that could help detect many banned drugs over longer time frames compared with current anti-doping tests. The enzyme interacts with a drug in a urine or blood sample, and works by cleaving off part of the drug to make it easier to analyse.

“It’s an enzyme from bacteria that is found in all sorts of environments, which we’ve purified and studied,” said team leader Dr Malcolm McLeod. The researchers revealed their initial findings on the enzyme’s potential anti-doping applications in a 2015 paper published in the journal Drug Testing and Analysis.

Since this publication, Dr McLeod and his colleagues have received funding from the World Anti-Doping Agency to change the enzyme’s structure. Not only will this enable it to detect more banned substances, it could also enable labs to detect doping for a longer period after an athlete takes a banned drug.

“We’re working with a biotechnology company in Chile to evaluate the improved enzymes, and they have sent them to three analytical labs around the world,” said Dr McLeod. One of these laboratories conducts anti-doping tests for sporting events.

“We hope this enzyme will quickly become a powerful tool used by labs in the fight against doping in sport,” concluded Dr McLeod.

Related News

Anti-inflammatory drug may help treat alcohol use disorder

A drug that is already FDA-approved for treating inflammatory conditions may help reduce both...

Osteoarthritis study uncovers new genetic links, drug targets

The genome-wide association study (GWAS) uncovered over 900 genetic associations, more than 500...

How brain cells are affected by Tourette syndrome

US researchers have conducted a cell-by-cell analysis of brain tissue from individuals with...


  • All content Copyright © 2025 Westwick-Farrow Pty Ltd