New immune cells added to blood cell 'atlas'


Friday, 10 August, 2018

New immune cells added to blood cell 'atlas'

Researchers from Melbourne’s Walter and Eliza Hall Institute have revealed the identities of new subsets of immune cells at the frontline of our body’s defences against infection.

Published in the Journal of Leukocyte Biology, the team’s discovery expands the understanding of immune cells called granulocytes — immune cells that can trigger inflammation and engulf microbes to slow an infection’s progress. As well as protecting against infection, granulocytes contribute to inflammatory conditions such as asthma and allergy.

Our immune system is a complex network of cells working together to prevent infection and keep us healthy. However, excessive or misdirected immune cell activity can drive inflammatory conditions such as asthma and allergies.

Granulocytes are critical ‘frontline’ cells in our immune system, serving as a rapid defence against infection by engulfing invading microbes, triggering inflammation and alerting other immune cells to the threat. The surface of granulocytes is covered with molecules that influence the cells’ function, explained research leader Dr Carolyn de Graaf.

“Our team focused our attention on a surface molecule called Siglec-F, which had previously been implicated in ‘switching off’ a type of granulocyte called eosinophils,” she said. Eosinophils are important triggers of inflammation in response to parasitic infections, but are also key players in inflammatory diseases such as asthma and allergies.

“We discovered we could divide eosinophils into two ‘populations’ based on how much Siglec-F they had on their surface,” Dr de Graaf said. “These two populations appeared to differ in their maturity, and thus in their function within the body. This is the first time differences in gene expression in these two populations have been documented.”

The research is part of a larger project to map the expression of the body’s 20,000 genes in different types of blood cells. The database of this information, Haemopedia, was launched two years ago as a freely available resource for the global research community.

“By comparing the genes that each eosinophil population expressed, we identified differences that further distinguished the two populations,” Dr de Graaf said.

“By making this information available to other researchers through Haemopedia, we hope it can accelerate research into eosinophils. This may help to unravel diseases linked to eosinophils such as asthma and allergies, as well as cancers of eosinophils including eosinophilic leukaemia and hypereosinophilic syndrome, a rare myeloproliferative neoplasm.”

The team also investigated the development of eosinophils and other related granulocytes. These cells develop in the bone marrow, originating from blood stem cells, said co-research leader Dr Kirsten Fairfax.

“The developing granulocytes transition through immature stages known as progenitor cells before becoming different populations of mature granulocytes, such as eosinophils,” she said.

“Using flow cytometry, we could follow the development of progenitors through different stages in the bone marrow. We discovered the amount of Siglec-F on the surface of cells varied as the cells developed. This allowed us to identify a never-before-identified precursor marked by Siglec-F, which could also give rise to macrophages, another immune cell closely related to granulocytes.”

The discovery, which has also been documented in Haemopedia, adds extra detail to the understanding of how the many different types of immune cells develop from blood stem cells. “This discovery may also impact monitoring of patients in clinical trials targeting the Siglec family as a treatment for eosinophilic diseases,” said Dr Fairfax.

Image credit: ©stock.adobe.com/au/Kateryna_Kon

Related News

A pre-emptive approach to treating leukaemia relapse

The monitoring of measurable residual disease (MRD), medication and low-dose chemotherapy is...

Long COVID abnormalities appear to resolve over time

Researchers at UNSW's Kirby Institute have shown that biomarkers in long COVID patients have...

RNA-targeted therapy shows promise for childhood dementia

Scientists have shown that a new RNA-targeted therapy can halt the progression of a specific type...


  • All content Copyright © 2024 Westwick-Farrow Pty Ltd