Nanostructured catalyst efficiently converts CO2 to CO


Thursday, 19 March, 2020


Nanostructured catalyst efficiently converts CO2 to CO

Korean researchers have developed a three-dimensional hierarchically porous nanostructured catalyst with a carbon dioxide (CO2) to carbon monoxide (CO) conversion rate up to 3.96 times higher than that of conventional nanoporous gold catalysts.

Described in Proceedings of the National Academy of Sciences, the catalyst helps overcome the existing limitations of the mass transport that has been a major cause of decreases in the CO2 conversion rate, holding a strong promise for the large-scale and cost-effective electrochemical conversion of CO2 into useful chemicals.

As CO2 emissions increase and fossil fuels deplete globally, reducing and converting CO2 to clean energy electrochemically has attracted a great deal of attention as a promising technology. Particularly due to the fact that the CO2 reduction reaction occurs competitively with hydrogen evolution reactions (HER) at similar redox potentials, the development of an efficient electrocatalyst for selective and robust CO2 reduction reactions has remained a key technological issue.

Gold (Au) is one of the most commonly used catalysts in CO2 reduction reactions, but the high cost and scarcity of Au pose obstacles for mass commercial applications. The development of nanostructures has been extensively studied as a potential approach to improving the selectivity for target products and maximising the number of active stable sites, thus enhancing the energy efficiency.

However, the nanopores of the previously reported complex nanostructures were easily blocked by gaseous CO bubbles during aqueous reactions. The CO bubbles hindered mass transport of the reactants through the electrolyte, resulting in low CO2 conversion rates.

Researchers from the Korea Advanced Institute of Science and Technology (KAIST), led by Professor Seokwoo Jeon and Professor Jihun Oh, designed a 3D hierarchically porous Au nanostructure with two different sizes of macropores and nanopores. The team used proximity-field nanopatterning (PnP) and electroplating techniques that are effective for fabricating the 3D well-ordered nanostructures.

The proposed nanostructure, comprising interconnected macroporous channels 200 to 300 nm wide and 10 nm nanopores, induces efficient mass transport through the interconnected macroporous channels as well as high selectivity by producing highly active stable sites from numerous nanopores. As a result, its electrodes show a high CO selectivity of 85.8% at a low overpotential of 0.264 V and efficient mass activity that is up to 3.96 times higher than that of de-alloyed nanoporous Au electrodes.

“These results are expected to solve the problem of mass transfer in the field of similar electrochemical reactions and can be applied to a wide range of green energy applications for the efficient utilisation of electrocatalysts,” the researchers said.

Image caption: Top view of scanning electron microscope (SEM) images of the hierarchically porous gold nanostructure (scale bar 3 μm). Image credit: Professor Seokwoo Jeon and Professor Jihun Oh, KAIST.

Please follow us and share on Twitter and Facebook. You can also subscribe for FREE to our weekly newsletters and bimonthly magazine.

Related News

Non-fasting blood test can screen youth for prediabetes

The HbA1c test measures the degree to which sugar molecules have linked irreversibly to molecules...

Glacier melt linked to human greenhouse gas emissions: study

Australian and New Zealand scientists have shown a strong link between human greenhouse gas...

Radiation sickness detected in a drop of blood

The new test uses a single drop of blood — collected from a simple finger prick — and...


  • All content Copyright © 2020 Westwick-Farrow Pty Ltd