Dual role for cell division machinery

Wednesday, 13 February, 2002

Biologists at the University of California, San Diego have discovered that the embryonic development of the first axis of an animal, which defines its inner and outer layers and is initiated by the entry of sperm into an egg, is intimately linked to a protein complex long known to be instrumental in cell division.

Their finding provides a more complete molecular picture for developmental biologists of how the one-celled embryo divides into an organism's outer layers (such as its skin and nervous system) and its inner layers (such as its muscle, gut and reproductive organs).

"What we discovered are some of essential parts of the machinery that a cell uses to set up differences in the embryo so that different types of tissue eventually develop," says Chad Rappleye, a graduate student in UCSD's Division of Biology. "People have long known that the sperm's entry into the egg prompts these initial differences. But how the cell sets up these molecular differences has been largely unknown. We found that this protein complex, long associated with a very different function, is essential for positioning the different molecular markers within the cell."

This protein complex-called anaphase-promoting complex (APC) appears to play two completely different roles in the cell. APC has long been known among biologists, as its name suggests, for its role in preparing the cell for division by allowing it progress through the metaphase to anaphase transition in the cell cycle. But it now appears to also play a central role in embryonic development.

"Our discovery helps to potentially explain why APC is such a huge complex, because it has multiple roles," says Raffi Aroian, an assistant professor of biology at UCSD who headed the investigation. "What evolution has done is taken a complex process for progression through the cell cycle and used it again to divide the one-celled embryo into its two basic fates, the inside and outside of organisms."

The UCSD research team uncovered the role of APC in development through a series of experiments that Rappleye conducted with mutants of the roundworm C. elegans. Over a two year period, Rappleye found mutants with impaired APC function and demonstrated that the protein complex helps the sperm push a protein known as PAR-3 away from just one region of the embryo so that a different protein, known as PAR-2, can bind to that one region.

In this way, PAR-3 ends up at one end and PAR-2 ends up at the other end of the embryo, establishing fundamental differences from one end to the other so that the one-celled embryo divides into an unequal sized pair of cells. The larger daughter develops into the outer layers of the organism and the smaller into the inner layers. The proteins are known as PAR, because mutations in the genes that produce them lead to errors in the partitioning of germline granules that, in a healthy embryo, all flow into the smaller of the first two dividing cells.

The idea that the general cellular machinery can play a direct role in specialised processes in development opens up a new way of thinking," says Aroian. "It changes the mindset of cell and developmental biologists. But from the cell's perspective, it makes perfect sense. Cells don't have to develop a whole new type of cellular machinery for development. They can use something they already have for another purpose."

Related News

AXT to distribute NT-MDT atomic force microscopes

Scientific equipment supplier AXT has announced a partnership with atomic force microscope (AFM)...

Epigenetic patterns differentiate triple-negative breast cancers

Australian researchers have identified a new method that could help tell the difference between...

Combined effect of pollutants studied in the Arctic

Researchers from the Fram Centre in Norway are conducting studies in Arctic waters to determine...

  • All content Copyright © 2020 Westwick-Farrow Pty Ltd