Molecular mechanism prevents cancer cells from multiplying

Friday, 27 July, 2018

Molecular mechanism prevents cancer cells from multiplying

Researchers from Université de Montréal (UdeM) have spearheaded the discovery of a new and direct molecular mechanism to stop cancer cells from proliferating.

Writing in the journal Nature Cell Biology, the scientists show that a disruption of a fine balance in the composition of ribosomes — huge molecules that translate the genetic code into proteins — results in a shutdown of cancer cell proliferation, triggering a process called senescence.

“Ribosomes are complex machines composed of both RNAs and proteins that make all the proteins necessary for cells to grow,” said UdeM Professor Gerardo Ferbeyre, the study’s senior author, who added that cancer cells grow and proliferate relentlessly and thus require a massive amount of ribosomes. Growing cells must coordinate the production of both ribosomal RNAs and ribosomal proteins in order to assemble them together in strict proportion to each other.

“We were surprised, however, to find that if the production of ribosomal RNA-protein proportions is driven out of balance in a cancer cell, proliferation can be shut down in a very simple and direct manner,” Professor Ferbeyre said.

Under the guidance of UdeM’s Frédéric Lessard, in collaboration with Professor Marlene Oeffinger of the UdeM-affilated Montreal Clinical Research Institute, Professor Ferbeyre and his team uncovered a new mechanism that uncouples ribosomal RNA from ribosomal protein synthesis to stop the proliferation of cells bearing oncogenic mutations. The team demonstrated an unbalanced ribosomal RNA and ribosomal protein synthesis during oncogene-induced senescence, a response that prevents cancer formation.

In the lab, senescent cells shut down ribosomal RNA synthesis but kept producing ribosomal proteins. The team then showed that excess copies of a ribosomal protein called RPS14 could now bind and inhibit a key protein — cyclin-dependent kinase-4, or CDK4 — required to drive cell proliferation.

Lessard noted immediate therapeutic implications of the team’s discovery, stating, “A drug that shuts down ribosomal RNA biogenesis would immediately lead to an accumulation of ribosomal proteins outside the ribosomes, and since tumour cells make more of them, they would be preferentially affected by these kinds of drugs.”

Professor Oeffinger added, “The physical interaction of RPS14 with CDK4 is the most direct link between ribosome synthesis and cell proliferation regulatory pathways discovered to date. It is therefore likely a very specific way for cancer progression to be prevented.”

Image caption: Professor Gerardo Ferbeyre. Image credit: Canadian Cancer Society.

Related News

Using artificial intelligence to measure breast density

An artificial intelligence (AI) algorithm measures breast density at the level of an experienced...

New urine test detects antibiotic-resistant superbugs

A new test, called DETECT, spots the molecular signatures of antibiotic-resistant bacteria...

The role of Pax5 in maintaining immune health

A protein called Pax5 helps to efficiently organise the genetic information required for immune...

  • All content Copyright © 2018 Westwick-Farrow Pty Ltd